EQUAÇÃO DE ONDAS DE GRACELI.
G ψ = E ψ = [Ϡ ] [ξ ] [,ς] ψ μ / h/c .
G = OPERADOR DE GRACELI EM ESTADOS QUÂNTICOS QUÍMICO RELATIVÍSTICOS.
E = ENERGIA DO SISTEMA DOS ESTADOS E SEUS POTENCIAIS DE INTERAÇÕES DE CAMPOS E ENERGIAS E TRANSFORMAÇÕES.
ψ = função de ondas.
μ = potencial químico.
h = constante de Planck.
c = velocidade da luz.
[ξ ]= interações das forças fundamentais = eletromagnética, forte e fraca.
[,ς] = valência, distribuição eletrônica, níveis e subníveis de energia, estado molecular e de interações entre partículas, potencial químico dos elementos químicos, potencial de interações e transformações entre campos e partículas, potencial de transformações de elétrons, átomo, e elementos químicos, e outros.
EQUAÇÃO DE ONDAS DE GRACELI.
G ψ = E ψ = [Ϡ ] [ξ ] [,ς] ψ μ / h/c .
G = OPERADOR DE GRACELI EM ESTADOS QUÂNTICOS QUÍMICO RELATIVÍSTICOS.
E = ENERGIA DO SISTEMA DOS ESTADOS E SEUS POTENCIAIS DE INTERAÇÕES DE CAMPOS E ENERGIAS E TRANSFORMAÇÕES.
ψ = função de ondas.
μ = potencial químico.
h = constante de Planck.
c = velocidade da luz.
[ξ ]= interações das forças fundamentais = eletromagnética, forte e fraca.
[,ς] = valência, distribuição eletrônica, níveis e subníveis de energia, estado molecular e de interações entre partículas, potencial químico dos elementos químicos, potencial de interações e transformações entre campos e partículas, potencial de transformações de elétrons, átomo, e elementos químicos, e outros.
EQUIVALÊNCIA GRACELI ONDAS - ENERGIA.
G ψ = E ψ = [Ϡ ] [ξ ] [,ς] ψ μ / h/c .
ESTATÍSTICA GRACELI.
1 / G ψ = E ψ = [Ϡ ] [ξ ] [,ς] ψ μ / h/c [-1] .
em que é a degenerescência quântica do estado , é a energia do estado , é o potencial químico, e , em que é a constante de Boltzmann[1]
EQUIVALÊNCIA MOMENTUM = ONDAS.
MO = G ψ = E ψ = [Ϡ ] [ξ ] [,ς] ψ μ / h/c .
EQUIVALÊNCIA
MASSA = ONDAS.
COMPRIMENTO = ONDAS.
ENERGIA = ONDAS.
E = M=COMPRIM. = G ψ = E ψ = [Ϡ ] [ξ ] [,ς] ψ μ / h/c .
[Ϡ ] = DENSIDADE DE ESTADOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS NORMAIS E DE PLASMAS E ESTADO CONDENSADO, ESTADO DE DISTRIBUIÇÃO ELETRÔNICA E NÍVEIS DE ENERGIA, ESTADO MOLECULAR E ESTRUTURAL, DE LIGAMENTOS E INTERAÇÕES DE CAMPOS E ENERGIAS, DE POTENCIAL QUÍMICO, DE TRANFORMAÇÕES, DE ENERGIA DE LIGAÇÃO, DE POTENCIAL DE FUSÃO, POTENCIAL DE SOLIDIFICAÇÃO, E OUTROS, COMO OS DAS DEZ DIMENSÕES DE GRACELI.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Teoria dos orbitais moleculares
Em química, a teoria dos orbitais moleculares é um método para determinar estruturas moleculares nas quais elétrons não são atribuídos a ligações químicas individuais entre átomos, ao invés disto são tratados como movimentos sob a influência do núcleo molecular.[1]
Nesta teoria, cada molécula possui um conjunto de orbitais moleculares, nos quais se assume que a função de onda de cada orbital ψf pode ser descrita como uma combinação linear dos n orbitais atômicos χi, de acordo com a equação:[2]
- / G ψ = E ψ = [Ϡ ] [ξ ] [,ς] ψ μ / h/c .
Onde cij podem ser determinados pela substituição destas equações pela equação de Schrödinger e pela aplicação do princípio variacional. Este método é conhecido como combinação linear de orbitais atômicos e é bastante utilizado pela química computacional. Uma transformação adicional unitária pode ser aplicada ao sistema para acelerar a convergência em alguns esquemas computacionais.
A teoria dos orbitais moleculares foi visto como um competidor à ligação de valência na década de 1930, hoje foi percebido que os dois métodos são relacionados e que quando generalizados eles se tornam equivalentes.
Comentários
Postar um comentário