EQUAÇÃO DE ONDAS DE GRACELI.


G ψ  = E ψ  =  [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c .


G = OPERADOR DE GRACELI EM ESTADOS QUÂNTICOS QUÍMICO RELATIVÍSTICOS.

E = ENERGIA DO SISTEMA DOS ESTADOS E SEUS POTENCIAIS DE INTERAÇÕES DE CAMPOS E ENERGIAS  E TRANSFORMAÇÕES.


ψ  = função de ondas. 

μ = potencial químico.

h = constante de Planck.

c = velocidade da luz.

[ξ ]=  interações das forças fundamentais = eletromagnética, forte e fraca.

[,ς] = valência, distribuição eletrônica, níveis e subníveis de energia, estado molecular e de interações entre partículas,  potencial químico dos elementos químicos, potencial de interações e transformações entre campos e partículas,  potencial de transformações de elétrons, átomo, e elementos químicos, e outros.

EQUAÇÃO DE ONDAS DE GRACELI.


G ψ  = E ψ  =  [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c .


G = OPERADOR DE GRACELI EM ESTADOS QUÂNTICOS QUÍMICO RELATIVÍSTICOS.

E = ENERGIA DO SISTEMA DOS ESTADOS E SEUS POTENCIAIS DE INTERAÇÕES DE CAMPOS E ENERGIAS  E TRANSFORMAÇÕES.


ψ  = função de ondas. 

μ = potencial químico.

h = constante de Planck.

c = velocidade da luz.

[ξ ]=  interações das forças fundamentais = eletromagnética, forte e fraca.

[,ς] = valência, distribuição eletrônica, níveis e subníveis de energia, estado molecular e de interações entre partículas,  potencial químico dos elementos químicos, potencial de interações e transformações entre campos e partículas,  potencial de transformações de elétrons, átomo, e elementos químicos, e outros.


 

   EQUIVALÊNCIA  GRACELI ONDAS - ENERGIA.

G ψ  = E ψ  = [Ϡ ]   [ξ ] [,ς]   ψ μ / h/c .


ESTATÍSTICA GRACELI.


1 / G ψ  = E ψ  =  [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c [-1] .

em que  é a degenerescência quântica do estado  é a energia do estado  é o potencial químico, e , em que  é a constante de Boltzmann[1]




EQUIVALÊNCIA MOMENTUM = ONDAS.

MO = G ψ  = E ψ  =  [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c .


EQUIVALÊNCIA 

MASSA = ONDAS.

COMPRIMENTO = ONDAS.

ENERGIA = ONDAS.

E = M=COMPRIM. = G ψ  = E ψ  =  [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c .

 [Ϡ ] = DENSIDADE DE ESTADOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS NORMAIS E DE PLASMAS E ESTADO CONDENSADO, ESTADO DE DISTRIBUIÇÃO ELETRÔNICA E NÍVEIS DE ENERGIA, ESTADO MOLECULAR E ESTRUTURAL, DE LIGAMENTOS  E INTERAÇÕES DE CAMPOS E ENERGIAS,  DE POTENCIAL QUÍMICO, DE TRANFORMAÇÕES,  DE ENERGIA DE LIGAÇÃO, DE POTENCIAL DE FUSÃO, POTENCIAL DE SOLIDIFICAÇÃO, E OUTROS, COMO OS DAS DEZ DIMENSÕES DE GRACELI.



Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.

Teoria dos orbitais moleculares

Em química, a teoria dos orbitais moleculares é um método para determinar estruturas moleculares nas quais elétrons não são atribuídos a ligações químicas individuais entre átomos, ao invés disto são tratados como movimentos sob a influência do núcleo molecular.[1]

Nesta teoria, cada molécula possui um conjunto de orbitais moleculares, nos quais se assume que a função de onda de cada orbital ψf pode ser descrita como uma combinação linear dos n orbitais atômicos χi, de acordo com a equação:[2]

 / 
                  G ψ  = E ψ  =  [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c .

Onde cij podem ser determinados pela substituição destas equações pela equação de Schrödinger e pela aplicação do princípio variacional. Este método é conhecido como combinação linear de orbitais atômicos e é bastante utilizado pela química computacional. Uma transformação adicional unitária pode ser aplicada ao sistema para acelerar a convergência em alguns esquemas computacionais.

A teoria dos orbitais moleculares foi visto como um competidor à ligação de valência na década de 1930, hoje foi percebido que os dois métodos são relacionados e que quando generalizados eles se tornam equivalentes.

Comentários

Postagens mais visitadas deste blog

FÓTONDINÃMICA GRACELI. COM O VETOR DE POTENCIAL MAGNÉTICO..